z-logo
open-access-imgOpen Access
Balancing Treatment Allocation over Continuous Covariates: A New Imbalance Measure for Minimization
Author(s) -
Yanqing Hu,
Feifang Hu
Publication year - 2012
Publication title -
journal of probability and statistics
Language(s) - English
Resource type - Journals
eISSN - 1687-9538
pISSN - 1687-952X
DOI - 10.1155/2012/842369
Subject(s) - covariate , measure (data warehouse) , mathematics , range (aeronautics) , econometrics , set (abstract data type) , outcome (game theory) , statistics , computer science , data mining , materials science , mathematical economics , composite material , programming language
In many clinical trials, it is important to balance treatment allocation over covariates. Although a great many papers have been published on balancing over discrete covariates, the procedures for continuous covariates have been less well studied. Traditionally, a continuous covariate usually needs to be transformed to a discrete one by splitting its range into several categories. Such practice may lead to loss of information and is susceptible to misspecification of covariate distribution. The more recent papers seek to define an imbalance measure that preserves the nature of continuous covariates and set the allocation rule in order to minimize that measure. We propose a new design, which defines the imbalance measure by the maximum assignment difference when all possible divisions of the covariate range are considered. This measure depends only on ranks of the covariate values and is therefore free of covariate distribution. In addition, we developed an efficient algorithm to implement the new procedure. By simulation studies we show that the new procedure is able to keep good balance properties in comparison with other popular designs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom