z-logo
open-access-imgOpen Access
Hemodialysis Key Features Mining and Patients Clustering Technologies
Author(s) -
Tzu-Chuen Lu,
Chun-Ya Tseng
Publication year - 2012
Publication title -
advances in artificial neural systems
Language(s) - English
Resource type - Journals
eISSN - 1687-7608
pISSN - 1687-7594
DOI - 10.1155/2012/835903
Subject(s) - key (lock) , hemodialysis , cluster analysis , computer science , data mining , association rule learning , entropy (arrow of time) , kidney disease , artificial intelligence , medicine , computer security , physics , quantum mechanics
The kidneys are very vital organs. Failing kidneys lose their ability to filter out waste products, resulting in kidney disease. To extend or save the lives of patients with impaired kidney function, kidney replacement is typically utilized, such as hemodialysis. This work uses an entropy function to identify key features related to hemodialysis. By identifying these key features, one can determine whether a patient requires hemodialysis. This work uses these key features as dimensions in cluster analysis. The key features can effectively determine whether a patient requires hemodialysis. The proposed data mining scheme finds association rules of each cluster. Hidden rules for causing any kidney disease can therefore be identified. The contributions and key points of this paper are as follows. (1) This paper finds some key features that can be used to predict the patient who may has high probability to perform hemodialysis. (2) The proposed scheme applies k-means clustering algorithm with the key features to category the patients. (3) A data mining technique is used to find the association rules from each cluster. (4) The mined rules can be used to determine whether a patient requires hemodialysis

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom