z-logo
open-access-imgOpen Access
Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2Nanotube Arrays
Author(s) -
Xiaomeng Wu,
Zhaohui Huang,
Yangai Liu,
Minghao Fang
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/832516
Subject(s) - nanotube , anodizing , photocatalysis , materials science , chemical engineering , degradation (telecommunications) , methylene blue , foil method , electrode , electrolyte , nanotechnology , crystal (programming language) , catalysis , composite material , chemistry , carbon nanotube , organic chemistry , aluminium , telecommunications , computer science , engineering , programming language
Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of methylene blue (MB) dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom