z-logo
open-access-imgOpen Access
Amino Acids That Centrally Influence Blood Pressure and Regional Blood Flow in Conscious Rats
Author(s) -
Yumi Takemoto
Publication year - 2012
Publication title -
journal of amino acids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.188
H-Index - 5
eISSN - 2090-0112
pISSN - 2090-0104
DOI - 10.1155/2012/831759
Subject(s) - amino acid , blood pressure , cerebral blood flow , medicine , blood flow , blood–brain barrier , neurotransmitter , neuroscience , mechanism (biology) , central nervous system , biochemistry , chemistry , biology , philosophy , epistemology
Functional roles of amino acids have increasingly become the focus of research. This paper summarizes amino acids that influence cardiovascular system via the brain of conscious rats. This paper firstly describes why amino acids are selected and outlines how the brain regulates blood pressure and regional blood flow. This section includes a concise history of amino acid neurotransmitters in cardiovascular research and summarizes brain areas where chemical stimulations produce blood pressure changes mainly in anesthetized animals. This is followed by comments about findings regarding several newly examined amino acids with intracisternal stimulation in conscious rats that produce changes in blood pressure. The same pressor or depressor response to central amino acid stimulations can be produced by distinct mechanisms at central and peripheral levels, which will be briefly explained. Thereafter, cardiovascular actions of some of amino acids at the mechanism level will be discussed based upon findings of pharmacological and regional blood flow measurements. Several examined amino acids in addition to the established neurotransmitter amino acids appear to differentially activate brain structures to produce changes in blood pressure and regional blood flows. They may have physiological roles in the healthy brain, but pathological roles in the brain with cerebral vascular diseases such as stroke where the blood-brain barrier is broken.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom