z-logo
open-access-imgOpen Access
In Vivo Disintegration of Four Different Luting Agents
Author(s) -
Deniz Gemalmaz,
Cornelis H. Pameijer,
Mark Latta,
Ferah Işik Kuybulu,
Toros Alcan
Publication year - 2011
Publication title -
international journal of dentistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 33
eISSN - 1687-8736
pISSN - 1687-8728
DOI - 10.1155/2012/831508
Subject(s) - glass ionomer cement , zinc phosphate , materials science , cement , molar , dental cement , dentistry , cementation (geology) , composite material , medicine , adhesive , coating , layer (electronics)
The purpose of this study was to evaluate the disintegration of luting agents. An intraoral sample holder was made having four holes of 1.4 mm diameter and 2 mm depth. The holder was soldered onto the buccal surface of an orthodontic band, which was cemented to the first upper molar in 12 patients, average age 26 years. The holes were filled with a zinc phosphate (Phosphate Kulzer), a glass ionomer (Ketac Cem), a resin-modified-glass ionomer (Fuji Plus), and a resin cement (Calibra). Impressions were made at baseline, and 6, 12, and 18 months from which epoxy replicas were made, which were scanned with an optical scanner. Total volume loss was calculated. The rank order of mean volume loss was as follows: Phosphate cement > Ketac Cem = Fuji Plus = Calibra. Cement type and time had statistically significant effects on volume loss of cements ( P < 0.001). Under in vivo conditions, zinc phosphate cement disintegrated the most, whereas no significant difference was observed for glass ionomer and resin-based cements. As intraoral conditions are considerably less aggressive than experimental laboratory conditions, the erosion behavior of glass ionomer cement was found to be similar to the resin-based cements in contradiction to previous laboratory results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom