Modeling of Tooling-Workpiece Interactions on Random Surfaces
Author(s) -
Hitesh Kataria,
Andres L. Carrano,
Brian K. Thorn
Publication year - 2012
Publication title -
advances in mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 40
eISSN - 1687-8140
pISSN - 1687-8132
DOI - 10.1155/2012/807018
Subject(s) - abrasive , machining , parametric statistics , profilometer , brittleness , parametric model , monte carlo method , mechanical engineering , representation (politics) , process (computing) , computer science , materials science , engineering drawing , mathematics , surface finish , engineering , metallurgy , statistics , politics , political science , law , operating system
Abrasive processes, commonly employed in manufacturing, are difficult to model because they rely on brittle particles with unknown geometry and multiple points of contact. Newly developed microreplicated abrasives allow for control of abrasive grit properties such as size, shape, and distribution. This paper proposes and validates a parametric model of abrasive machining that allows for studying the interaction of this particular tooling with randomly generated surfaces. In this work, the parameters of a probability distribution function that represents the workpiece surface are approximated by profilometry data. Monte Carlo simulation is used to account for inter- and intraspecimen variability. A geometric representation is used to mathematically represent the interaction between workpiece and tool. The results show good correlation between theoretical and actual values. This approach could be used to aid in tool geometry design as well as in process parameter optimization
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom