Controlled Roof Collapse during Secondary Mining in Coal Mines
Author(s) -
A.J. Hutchinson
Publication year - 2012
Publication title -
international journal of differential equations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 20
eISSN - 1687-9651
pISSN - 1687-9643
DOI - 10.1155/2012/806078
Subject(s) - roof , beam (structure) , dimensionless quantity , pillar , geology , structural engineering , coal mining , curvature , coal , geometry , mining engineering , geotechnical engineering , mechanics , mathematics , engineering , physics , waste management
The problem considered is an investigation of the possible collapse of the roof between the pillar next to be mined in secondary coal mining and the first line of pillar remnants called snooks. The roof rock between the pillar, which is the working face, and the snook is modelled as an Euler-Bernoulli beam acted on at each end by a horizontal force and by its weight per unit length. The beam is clamped at the pillar and simply supported (hinged) at the snook. The dimensionless differential equation for the beam and the boundary conditions depend on one dimensionless number . We consider the range of values of before the displacement and curvature first become singular at =1. The model predicts that for all practical purposes, the beam will break at the clamped end at the pillar. The failure of the beam for values of greater than 1 is investigated computationally
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom