Video Classification and Adaptive QoP/QoS Control for Multiresolution Video Applications on IPTV
Author(s) -
Huang Shyh-Fang
Publication year - 2012
Publication title -
international journal of digital multimedia broadcasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.164
H-Index - 17
eISSN - 1687-7586
pISSN - 1687-7578
DOI - 10.1155/2012/801641
Subject(s) - computer science , quality of service , wimax , computer network , video quality , iptv , scalable video coding , video tracking , coding (social sciences) , interoperability , video processing , real time computing , telecommunications , artificial intelligence , motion compensation , metric (unit) , operations management , statistics , mathematics , economics , wireless , operating system
With the development of heterogeneous networks and video coding standards, multiresolution video applications over networks become important. It is critical to ensure the service quality of the network for time-sensitive video services. Worldwide Interoperability for Microwave Access (WIMAX) is a good candidate for delivering video signals because through WIMAX the delivery quality based on the quality-of-service (QoS) setting can be guaranteed. The selection of suitable QoS parameters is, however, not trivial for service users. Instead, what a video service user really concerns with is the video quality of presentation (QoP) which includes the video resolution, the fidelity, and the frame rate. In this paper, we present a quality control mechanism in multiresolution video coding structures over WIMAX networks and also investigate the relationship between QoP and QoS in end-to-end connections. Consequently, the video presentation quality can be simply mapped to the network requirements by a mapping table, and then the end-to-end QoS is achieved. We performed experiments with multiresolution MPEG coding over WIMAX networks. In addition to the QoP parameters, the video characteristics, such as, the picture activity and the video mobility, also affect the QoS significantly
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom