z-logo
open-access-imgOpen Access
Visual Odometry through Appearance- and Feature-Based Method with Omnidirectional Images
Author(s) -
David Valiente García,
Lorenzo Fernández Rojo,
Arturo Gil,
Luis Payá Castelló,
Óscar Reinoso
Publication year - 2012
Publication title -
journal of robotics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.303
H-Index - 14
eISSN - 1687-9619
pISSN - 1687-9600
DOI - 10.1155/2012/797063
Subject(s) - visual odometry , computer vision , artificial intelligence , omnidirectional camera , omnidirectional antenna , odometry , computer science , feature (linguistics) , mobile robot , trajectory , robot , motion estimation , transformation (genetics) , telecommunications , linguistics , philosophy , physics , biochemistry , chemistry , astronomy , antenna (radio) , gene
In the field of mobile autonomous robots, visual odometry entails the retrieval of a motion transformation between two consecutive poses of the robot by means of a camera sensor solely. A visual odometry provides an essential information for trajectory estimation in problems such as Localization and SLAM (Simultaneous Localization and Mapping). In this work we present a motion estimation based on a single omnidirectional camera. We exploited the maximized horizontal field of view provided by this camera, which allows us to encode large scene information into the same image. The estimation of the motion transformation between two poses is incrementally computed, since only the processing of two consecutive omnidirectional images is required. Particularly, we exploited the versatility of the information gathered by omnidirectional images to perform both an appearance-based and a feature-based method to obtain visual odometry results. We carried out a set of experiments in real indoor environments to test the validity and suitability of both methods. The data used in the experiments consists of a large sets of omnidirectional images captured along the robot's trajectory in three different real scenarios. Experimental results demonstrate the accuracy of the estimations and the capability of both methods to work in real-time

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom