z-logo
open-access-imgOpen Access
Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes
Author(s) -
Boucar Diouf,
Woo Sik Jeon,
Ramchandra Pode,
Jang Hyuk Kwon
Publication year - 2012
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2012/794674
Subject(s) - iridium , phosphorescence , dopant , homo/lumo , materials science , oled , exciton , luminous efficacy , molecular orbital , optoelectronics , diode , doping , trapping , molecule , layer (electronics) , physics , nanotechnology , optics , chemistry , fluorescence , condensed matter physics , ecology , biochemistry , quantum mechanics , biology , catalysis
Key factors to control the efficiency in iridium doped red and green phosphorescent light emitting diodes (PhOLEDs) are discussed in this review: exciton confinement, charge trapping, dopant concentration and dopant molecular structure. They are not independent from each other but we attempt to present each of them in a situation where its specific effects are predominant. A good efficiency in PhOLEDs requires the triplet energy of host molecules to be sufficiently high to confine the triplet excitons within the emitting layer (EML). Furthermore, triplet excitons must be retained within the EML and should not drift into the nonradiative levels of the electron or hole transport layer (resp., ETL or HTL); this is achieved by carefully choosing the EML’s adjacent layers. We prove how reducing charge trapping results in higher efficiency in PhOLEDs. We show that there is an ideal concentration for a maximum efficiency of PhOLEDs. Finally, we present the effects of molecular structure on the efficiency of PhOLEDs using red iridium complex dopant with different modifications on the ligand to tune its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom