Neurospora crassaLight Signal Transduction Is Affected by ROS
Author(s) -
T. A. Belozerskaya,
Н. Н. Гесслер,
Е. П. Исакова,
Yulia I. Deryabina
Publication year - 2011
Publication title -
journal of signal transduction
Language(s) - English
Resource type - Journals
eISSN - 2090-1739
pISSN - 2090-1747
DOI - 10.1155/2012/791963
Subject(s) - neurospora crassa , medicine , signal transduction , neurospora , transduction (biophysics) , microbiology and biotechnology , biochemistry , biology , gene , mutant
In the ascomycete fungus Neurospora crassa blue-violet light controls the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. A major photoreceptor in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white collar-1 and white collar-2 . The photosignal transduction is started by photochemical activity of an excited FAD molecule noncovalently bound by the LOV domain (a specialized variant of the PAS domain). The presence of zinc fingers (the GATA-recognizing sequences) in both WC-1 and WC-2 proteins suggests that they might function as transcription factors. However, a critical analysis of the phototransduction mechanism considers the existence of residual light responses upon absence of WCC or its homologs in fungi. The data presented point at endogenous ROS generated by a photon stimulus as an alternative input to pass on light signals to downstream targets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom