A Domain Decomposition Method for Hybrid Shell Vector Element with Boundary Integral Method
Author(s) -
Lin Lei,
Jun Hu,
Haoquan Hu
Publication year - 2012
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2012/790164
Subject(s) - boundary element method , shell (structure) , domain decomposition methods , polygon mesh , coating , boundary (topology) , finite element method , element (criminal law) , mathematical analysis , computer science , mathematics , materials science , geometry , structural engineering , engineering , composite material , political science , law
For the conducting body coated with thin-layer material, plenty of fine meshes are required in general. In this paper, shell vector element (SVE) is used for modeling of thin coating dielectric. Further, a domain decomposition (DD) method for hybrid shell vector element method boundary integral (SVE-BI) is proposed for analysis of electromagnetic problem of multiple three-dimensional thin-coating objects. By this method, the whole computational domains are divided into sub-SVE domains and boundary element domains. With shell element, not only the unknowns are far less than the one by traditional vector element method, but only surface integral is required. The DDM framework used for hybrid SVE-BI also enhances the computational efficiency of solving scattering from multiple coating objects greatly. Finally, several numerical examples are presented to prove the accuracy and efficiency of this DDM-SVE-BI method
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom