Existence of Solution to a Second-Order Boundary Value Problem via Noncompactness Measures
Author(s) -
Wen-Xue Zhou,
Jigen Peng
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/786404
Subject(s) - uniqueness , mathematics , boundary value problem , banach space , spectral radius , operator (biology) , mathematical analysis , measure (data warehouse) , order (exchange) , value (mathematics) , fixed point theorem , dirichlet boundary condition , dirichlet distribution , computer science , physics , statistics , eigenvalues and eigenvectors , biochemistry , chemistry , finance , repressor , quantum mechanics , database , transcription factor , economics , gene
The existence and uniqueness of the solutions to the Dirichlet boundary value problem in the Banach spaces is discussed by using the fixed point theory of condensing mapping, doing precise computation of measure of noncompactness, and calculating the spectral radius of linear operator
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom