z-logo
open-access-imgOpen Access
Enthalpy-Entropy Compensation in Polyester Degradation Reactions
Author(s) -
Adam AlMulla
Publication year - 2012
Publication title -
international journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 25
eISSN - 1687-8078
pISSN - 1687-806X
DOI - 10.1155/2012/782346
Subject(s) - enthalpy , materials science , algorithm , thermodynamics , computer science , physics
In an earlier work the author had studied the degradation kinetics of polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polybutylene terephthalate (PBT) under nonisothermal conditions in air and N2 at heating rates of 5, 10, 15, and 20°C/min. In this paper the kinetic degradation parameters of PET, PTT, and PBT were estimated using the Coats-Redfern method for two different weight loss regions ranging from 2–8% (Zone I) and 8–40% (Zone II). A comparative analysis of the enthalpy-entropy compensation effect for these polyesters in air and N2 is presented. A linear relationship was found to exist between entropy and enthalpy values. The following criteria were applied to establish an enthalpy-entropy compensation effect and to check the presence of an isokinetic temperature: (a) Exner’s plot of log k3T1 versus log k3T2, and (b) Krug et al. linear regression of ΔH versus ΔG. By the use of the latter two methods, varying isokinetic temperatures were obtained. These temperatures were not in the range of the experimental work conducted, indicating that these systems do not display compensation phenomena

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom