z-logo
open-access-imgOpen Access
PMK-2, the First Integral Thermal-Hydraulics Tests for the Safety Evaluation of VVER-440/213 Nuclear Power Plants
Author(s) -
Gy. Ézsöl,
L. Perneczky,
L. Szabados,
István György Tóth
Publication year - 2011
Publication title -
science and technology of nuclear installations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.417
H-Index - 24
eISSN - 1687-6083
pISSN - 1687-6075
DOI - 10.1155/2012/780472
Subject(s) - vver , thermal hydraulics , pressurized water reactor , nuclear engineering , engineering , representativeness heuristic , nuclear power , nuclear power plant , environmental science , reliability engineering , mathematics , nuclear physics , statistics , physics , mechanics , heat transfer
The PMK-2 facility is a full-pressure thermal-hydraulic model of the primary and partly the secondary circuit of the VVER-type units of Paks NPP. The facility was the first integral-type facility for VVERs. The PMK-2 was followed later by the PACTEL (for VVER-440), the ISB, and PSB for VVER-1000. Since the startup of the facility in 1985, 55 experiments have been performed primarily in international frameworks with the participation of experts from 29 European and overseas countries forming a scientific school to better understand VVER system behaviour and reach a high level of modelling of accident sequences. The ATHLET, CATHARE, and RELAP5 codes have been validated including both qualitative and quantitative assessments. The former was almost exclusively applied to the early phase of validation by integral experiments, while the quantitative assessments have been performed by the Fast Fourier Transform Based Method. Paper gives comprehensive information on the design features of PMK-2 facility with a special respect to the representativeness of phenomena, the experiments performed, and the results of the validation of ATHLET, CATHARE, and RELAP5 codes. Safety significance of the PMK-2 projects is also discussed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom