z-logo
open-access-imgOpen Access
Location-Aware Source Routing Protocol for Underwater Acoustic Networks of AUVs
Author(s) -
Edward A. Carlson,
Pierre-Philippe Beaujean,
Edgar An
Publication year - 2012
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2012/765924
Subject(s) - flooding (psychology) , routing protocol , computer network , node (physics) , computer science , underwater , time division multiple access , network topology , routing (electronic design automation) , real time computing , transmission (telecommunications) , metrics , underwater acoustic communication , distributed computing , dynamic source routing , engineering , geography , telecommunications , psychology , structural engineering , archaeology , psychotherapist
Acoustic networks of autonomous underwater vehicles (AUVs) cannot typically rely on protocols intended for terrestrial radio networks. This work describes a new location-aware source routing (LASR) protocol shown to provide superior network performance over two commonly used network protocols—flooding and dynamic source routing (DSR)—in simulation studies of underwater acoustic networks of AUVs. LASR shares some features with DSR but also includes an improved link/route metric and a node tracking system. LASR also replaces DSR's shortest-path routing with the expected transmission count (ETX) metric. This allows LASR to make more informed routing decisions, which greatly increases performance compared to DSR. Provision for a node tracking system is another novel addition: using the time-division multiple access (TDMA) feature of the simulated acoustic modem, LASR includes a tracking system that predicts node locations, so that LASR can proactively respond to topology changes. LASR delivers 2-3 times as many messages as flooding in 72% of the simulated missions and delivers 2–4 times as many messages as DSR in 100% of the missions. In 67% of the simulated missions, LASR delivers messages requiring multiple hops to cross the network with 2–5 times greater reliability than flooding or DSR

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom