A New GLLD Operator for Mass Detection in Digital Mammograms
Author(s) -
Norhene Gargouri Ben Ayed,
Alima Dammak Masmoudi,
Dorra Sellami Masmoudi,
Riadh Abid
Publication year - 2012
Publication title -
international journal of biomedical imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.626
H-Index - 41
eISSN - 1687-4196
pISSN - 1687-4188
DOI - 10.1155/2012/765649
Subject(s) - support vector machine , computer science , artificial intelligence , local binary patterns , pattern recognition (psychology) , artificial neural network , classifier (uml) , binary number , algorithm , data mining , mathematics , image (mathematics) , arithmetic , histogram
During the last decade, several works have dealt with computer automatic diagnosis (CAD) of masses in digital mammograms. Generally, the main difficulty remains the detection of masses. This work proposes an efficient methodology for mass detection based on a new local feature extraction. Local binary pattern (LBP) operator and its variants proposed by Ojala are a powerful tool for textures classification. However, it has been proved that such operators are not able to model at their own texture masses. We propose in this paper a new local pattern model named gray level and local difference (GLLD) where we take into consideration absolute gray level values as well as local difference as local binary features. Artificial neural networks (ANNs), support vector machine (SVM), and k-nearest neighbors (kNNs) are, then, used for classifying masses from nonmasses, illustrating better performance of ANN classifier. We have used 1000 regions of interest (ROIs) obtained from the Digital Database for Screening Mammography (DDSM). The area under the curve of the corresponding approach has been found to be A z = 0.95 for the mass detection step. A comparative study with previous approaches proves that our approach offers the best performances.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom