Effects of Cropping System and Cowpea Variety on Symbiotic Potential and Yields of Cowpea (Vigna unguiculataL. Walp) and Pearl Millet (Pennisetum glaucumL.) in the Sudano-Sahelian Zone of Mali
Author(s) -
Zoumana Kouyaté,
Tatiana Krasova Wade,
Inamoud Ibny Yattara,
Marc Neyra
Publication year - 2012
Publication title -
international journal of agronomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.493
H-Index - 16
eISSN - 1687-8167
pISSN - 1687-8159
DOI - 10.1155/2012/761391
Subject(s) - vigna , pennisetum , intercropping , agronomy , biology , randomized block design , crop , cropping , cropping system , agriculture , ecology
Many cowpea varieties (Vigna unguiculata L. Walp) have been proposed by research in Mali. None of these varieties were investigated for their symbiotic potential in terms of root nodulation and mycorrhizal infection. An experiment was conducted at Cinzana Research Station, from 2007 to 2009 with an objective to identify a cowpea variety with high symbiotic potential which may improve millet/cowpea cropping global production. Randomized complete block (RCBD) design with a factorial combination of 3 cowpea varieties (IT89KD-374, CZ1-94-23-1, and CZ11-94-5C) and 2 cropping systems (millet/cowpea intercropping and cowpea-millet rotation) was used. On farm test was conducted to evaluate CZ11-94-5C and IT89KD-374 nodulation performance. Cowpea variety CZ11-94-5-C had the highest nodule number and nodule weight. Millet/cowpea alternate rows intercropping (1/1), only, had a significant influence on cowpea root infection rates by mycorrhizae, on the 45th day after emergence. IT89KD-374 gave the best cowpea grain yield (1540 kg ha−1) in sole crop. The highest millet grain yield (1650 kg ha−1) was obtained under CZ11-94-5C-millet rotation. Farmers' fields assessments results confirmed CZ11-94-5C performance on research station. The CZ11-94-5C cowpea variety needs to be more characterized
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom