High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP
Author(s) -
Khaled Benkrid,
Ali Akoglu,
Cheng Ling,
Yang Song,
Ying Liu,
Xiang Tian
Publication year - 2012
Publication title -
international journal of reconfigurable computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 16
eISSN - 1687-7209
pISSN - 1687-7195
DOI - 10.1155/2012/752910
Subject(s) - computer science , field programmable gate array , parallel computing , pairwise comparison , graphics , ibm , speedup , general purpose computing on graphics processing units , performance improvement , computer hardware , computer architecture , artificial intelligence , operating system , operations management , materials science , economics , nanotechnology
This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs), Graphics Processor Units (GPUs), and IBM’s Cell Broadband Engine (Cell BE), in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools), FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom