N Point DCT VLSI Architecture for Emerging HEVC Standard
Author(s) -
Ashfaq Ahmed,
Muhammad Shahid,
Ata Ur Rehman
Publication year - 2012
Publication title -
vlsi design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.123
H-Index - 24
eISSN - 1065-514X
pISSN - 1026-7123
DOI - 10.1155/2012/752024
Subject(s) - discrete cosine transform , computer science , very large scale integration , codec , block (permutation group theory) , architecture , parallel computing , computation , parallel architecture , computer architecture , overhead (engineering) , computer engineering , computer hardware , embedded system , algorithm , image (mathematics) , artificial intelligence , mathematics , art , visual arts , geometry , operating system
This work presents a flexible VLSI architecture to compute the -point DCT. Since HEVC supports different block sizes for the computation of the DCT, that is, 4×4 up to 32×32, the design of a flexible architecture to support them helps reducing the area overhead of hardware implementations. The hardware proposed in this work is partially folded to save area and to get speed for large video sequences sizes. The proposed architecture relies on the decomposition of the DCT matrices into sparse submatrices in order to reduce the multiplications. Finally, multiplications are completely eliminated using the lifting scheme. The proposed architecture sustains real-time processing of 1080P HD video codec running at 150 MHz
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom