Reactive Oxygen Species Formation and Apoptosis in Human Peripheral Blood Mononuclear Cell Induced by 900 MHz Mobile Phone Radiation
Author(s) -
Yaosheng Lu,
Bao-Tian Huang,
YaoXiong Huang
Publication year - 2012
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2012/740280
Subject(s) - peripheral blood mononuclear cell , reactive oxygen species , apoptosis , oxidative stress , microbiology and biotechnology , programmed cell death , mitochondrion , chemistry , mitochondrial ros , biology , biochemistry , in vitro
We demonstrate that reactive oxygen species (ROS) plays an important role in the process of apoptosis in human peripheral blood mononuclear cell (PBMC) which is induced by the radiation of 900 MHz radiofrequency electromagnetic field (RFEMF) at a specific absorption rate (SAR) of ~0.4 W/kg when the exposure lasts longer than two hours. The apoptosis is induced through the mitochondrial pathway and mediated by activating ROS and caspase-3, and decreasing the mitochondrial potential. The activation of ROS is triggered by the conformation disturbance of lipids, protein, and DNA induced by the exposure of GSM RFEMF. Although human PBMC was found to have a self-protection mechanism of releasing carotenoid in response to oxidative stress to lessen the further increase of ROS, the imbalance between the antioxidant defenses and ROS formation still results in an increase of cell death with the exposure time and can cause about 37% human PBMC death in eight hours
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom