z-logo
open-access-imgOpen Access
Degradation of Gaseous Formaldehyde by Visible Light-Responsive Titania Photocatalyst Filter
Author(s) -
Tun-Ping Teng,
Tun-Chien Teng,
Shu-I Pan
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/739734
Subject(s) - photocatalysis , formaldehyde , degradation (telecommunications) , materials science , visible spectrum , filter (signal processing) , chemical engineering , irradiation , photochemistry , catalysis , chemistry , optoelectronics , organic chemistry , computer science , telecommunications , physics , nuclear physics , engineering , computer vision
A method is proposed that uses electrophoretic deposition (EPD) to fabricate the titania (TiO2) photocatalyst filter and then successfully modifies it by lithium nitrate (LiNO3) to be visible light responsive such that the modified photocatalyst filter effectively degrades gaseous formaldehyde. The performance of degrading gaseous formaldehyde is evaluated in the photocatalytic circulation reactor for different temperature and light sources. The results show that the modified TiO2 photocatalyst filter has much better degradation performance for gaseous formaldehyde than the original TiO2 photocatalyst filter regardless of light source, and the performance is better at the higher ambient temperature. The best total average degradation performance of the modified photocatalyst filter is about 9.2% and 16.3% higher than the original photocatalyst filter (P-25, Degussa) for the UVA and visible irradiation, respectively, at 26°C

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom