z-logo
open-access-imgOpen Access
Signorini Cylindrical Waves and Shannon Wavelets
Author(s) -
Carlo Cattani
Publication year - 2012
Publication title -
advances in numerical analysis
Language(s) - English
Resource type - Journals
eISSN - 1687-9570
pISSN - 1687-9562
DOI - 10.1155/2012/731591
Subject(s) - wavelet , mathematics , mathematical analysis , nonlinear system , cylindrical coordinate system , hyperelastic material , classical mechanics , physics , quantum mechanics , artificial intelligence , computer science
Hyperelastic materials based on Signorini’s strain energy density are studied by using Shannon wavelets. Cylindrical waves propagating in a nonlinear elastic material from the circular cylindrical cavity along the radius are analyzed in the following by focusing both on the main nonlinear effects and on the method of solution for the corresponding nonlinear differential equation. Cylindrical waves’ solution of the resulting equations can be easily represented in terms of this family of wavelets. It will be shown that Hankel functions can be linked with Shannon wavelets, so that wavelets can have some physical meaning being a good approximation of cylindrical waves. The nonlinearity is introduced by Signorini elastic energy density and corresponds to the quadratic nonlinearity relative to displacements. The configuration state of elastic medium is defined through cylindrical coordinates but the deformation is considered as functionally depending only on the radial coordinate. The physical and geometrical nonlinearities arising from the wave propagation are discussed from the point of view of wavelet analysis

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom