z-logo
open-access-imgOpen Access
Efficient Execution of Networked MPSoC Models by Exploiting Multiple Platform Levels
Author(s) -
Christoph Röth,
Joachim Meyer,
Michael Rückauer,
Oliver Sander,
Jürgen Becker
Publication year - 2012
Publication title -
international journal of reconfigurable computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 16
eISSN - 1687-7209
pISSN - 1687-7195
DOI - 10.1155/2012/729786
Subject(s) - mpsoc , computer science , synchronization (alternating current) , adaptation (eye) , multiprocessing , computer architecture , embedded system , distributed computing , domain (mathematical analysis) , system on a chip , computer network , parallel computing , mathematical analysis , channel (broadcasting) , physics , mathematics , optics
Novel embedded applications are characterized by increasing requirements on processing performance as well as the demand for communication between several or many devices. Networked Multiprocessor System-on-Chips (MPSoCs) are a possible solution to cope with this increasing complexity. Such systems require a detailed exploration on both architectures and system design. An approach that allows investigating interdependencies between system and network domain is the cooperative execution of system design tools with a network simulator. Within previous work, synchronization mechanisms have been developed for parallel system simulation and system/network co-simulation using the high level architecture (HLA). Within this contribution, a methodology is presented that extends previous work with further building blocks towards a construction kit for system/network co-simulation. The methodology facilitates flexible assembly of components and adaptation to the specific needs of use cases in terms of performance and accuracy. Underlying concepts and made extensions are discussed in detail. Benefits are substantiated by means of various benchmarks

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom