z-logo
open-access-imgOpen Access
An Experimental and Modeling Study on the Response to Varying Pore Pressure and Reservoir Fluids in the Morrow A Sandstone
Author(s) -
Aaron Wandler,
Thomas L. Davis,
Paritosh Singh
Publication year - 2012
Publication title -
international journal of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.253
H-Index - 19
eISSN - 1687-8868
pISSN - 1687-885X
DOI - 10.1155/2012/726408
Subject(s) - geology , pore water pressure , supercritical fluid , amplitude , saturation (graph theory) , enhanced oil recovery , shear (geology) , mineralogy , petrophysics , petrology , brine , petroleum reservoir , well logging , fluid pressure , petroleum engineering , geotechnical engineering , mechanics , porosity , chemistry , physics , mathematics , organic chemistry , combinatorics , quantum mechanics
In mature oil fields undergoing enhanced oil recovery methods, such as CO2 injection, monitoring the reservoir changes becomes important. To understand how reservoir changes influence compressional wave (P) and shear wave (S) velocities, we conducted laboratory core experiments on five core samples taken from the Morrow A sandstone at Postle Field, Oklahoma. The laboratory experiments measured P- and S-wave velocities as a function of confining pressure, pore pressure, and fluid type (which included CO2 in the gas and supercritical phase). P-wave velocity shows a response that is sensitive to both pore pressure and fluid saturation. However, S-wave velocity is primarily sensitive to changes in pore pressure. We use the fluid and pore pressure response measured from the core samples to modify velocity well logs through a log facies model correlation. The modified well logs simulate the brine- and CO2-saturated cases at minimum and maximum reservoir pressure and are inputs for full waveform seismic modeling. Modeling shows how P- and S-waves have a different time-lapse amplitude response with offset. The results from the laboratory experiments and modeling show the advantages of combining P- and S-wave attributes in recognizing the mechanism responsible for time-lapse changes due to CO2 injection

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom