Potential Energy Surfaces for Reactions of X Metal Atoms (X = Cu, Zn, Cd, Ga, Al, Au, or Hg) with YH4 Molecules (Y = C, Si, or Ge) and Transition Probabilities at Avoided Crossings in Some Cases
Author(s) -
O. Novaro,
María del Alba Pacheco-Blas,
J. H. PachecoSánchez
Publication year - 2012
Publication title -
advances in physical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 17
eISSN - 1687-7993
pISSN - 1687-7985
DOI - 10.1155/2012/720197
Subject(s) - chemistry , excited state , germane , singlet state , ab initio , transition metal , metal , atom (system on chip) , molecule , silane , crystallography , atomic physics , germanium , silicon , catalysis , physics , biochemistry , organic chemistry , computer science , embedded system
We review ab initio studies based on quantum mechanics on the most important mechanisms of reaction leading to the C–H, Si–H, and Ge–H bond breaking of methane, silane, and germane, respectively, by a metal atom in the lowest states in Cs symmetry: X(2nd excited state, 1st excited state and ground state) + YH4→ H3XYH → H + XYH3 and XH + YH3. with X = Au, Zn, Cd, Hg, Al, and G, and Y = C, Si, and Ge. Important issues considered here are (a) the role that the occupation of the d-, s-, or p-shells of the metal atom plays in the interactions with a methane or silane or germane molecule, (b) the role of either singlet or doublet excited states of metals on the reaction barriers, and (c) the role of transition probabilities for different families of reacting metals with these gases, using the H–X–Y angle as a reaction coordinate. The breaking of the Y–H bond of YH4 is useful in the production of amorphous hydrogenated films, necessary in several fields of industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom