z-logo
open-access-imgOpen Access
An Efficient Periodic Broadcasting with Small Latency and Buffer Demand for Near Video on Demand
Author(s) -
Yingnan Chen,
LiMing Tseng
Publication year - 2012
Publication title -
international journal of digital multimedia broadcasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.164
H-Index - 17
eISSN - 1687-7586
pISSN - 1687-7578
DOI - 10.1155/2012/717538
Subject(s) - computer science , broadcasting (networking) , buffer (optical fiber) , video on demand , computer network , latency (audio) , on demand , scheme (mathematics) , telecommunications , multimedia , mathematical analysis , mathematics
Broadcasting Protocols can efficiently transmit videos that simultaneously shared by clients with partitioning the videos into segments. Many studies focus on decreasing clients' waiting time, such as the fixed-delay pagoda broadcasting (FDPB) and the harmonic broadcasting schemes. However, limited-capability client devices such as PDAs and set-top boxes (STBs) suffer from storing a significant fraction of each video while it is being watched. How to reduce clients' buffer demands is thus an important issue. Related works include the staircase broadcasting (SB), the reverse fast broadcasting (RFB), and the hybrid broadcasting (HyB) schemes. This work improves FDPB to save client buffering space as well as waiting time. In comparison with SB, RFB, and HyB, the improved FDPB scheme can yield the smallest waiting time under the same buffer requirements

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom