Evolutionary Implications of Mechanistic Models of TE-Mediated Hybrid Incompatibility
Author(s) -
Dean M. Castillo,
Leonie C. Moyle
Publication year - 2012
Publication title -
international journal of evolutionary biology
Language(s) - English
Resource type - Journals
eISSN - 2090-8032
pISSN - 2090-052X
DOI - 10.1155/2012/698198
Subject(s) - biology , sterility , reproductive isolation , evolutionary biology , hybrid , arabidopsis , genetics , gene , sociology , population , demography , botany , mutant
New models of TE repression in plants (specifically Arabidopsis ) have suggested specific mechanisms by which TE misregulation in hybrids might result in the expression of hybrid inviability. If true, these models suggest as yet undescribed consequences for (1) mechanistic connections between hybrid problems expressed at different postzygotic stages (e.g., inviability versus sterility), (2) the predicted strength, stage, and direction of isolation between diverging lineages that differ in TE activity, and (3) the association between species attributes that influence TE dynamics (e.g., mode of reproduction, geographical structure) and the rate at which they could accumulate incompatibilities. In this paper, we explore these implications and outline future empirical directions for generating data necessary to evaluate them.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom