Bacterial Colony Optimization
Author(s) -
Ben Niu,
Hong Wang
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/698057
Subject(s) - schema (genetic algorithms) , computer science , mathematical optimization , optimization problem , benchmark (surveying) , chemotaxis , bacterial colony , optimization algorithm , distributed computing , algorithm , mathematics , biology , machine learning , bacteria , genetics , receptor , geodesy , geography
This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli) lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO). BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems) are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom