A Note on the Lebesgue-Radon-Nikodym Theorem with respect to Weighted -adic Invariant Integral on
Author(s) -
Joohee Jeong,
Seog-Hoon Rim
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/696720
Subject(s) - mathematics , lebesgue integration , invariant (physics) , pure mathematics , lebesgue–stieltjes integration , lebesgue measure , radon , measure (data warehouse) , lp space , discrete mathematics , riemann integral , mathematical physics , physics , quantum mechanics , banach space , operator theory , fourier integral operator , database , computer science
We will give the Lebesgue-Radon-Nikodym theorem with respect to weighted -adic -measure on ℤ. In special case, =1, we can derive the same result as Kim, 2012; Kim et al., 2011
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom