An Entropy-Based Multiobjective Evolutionary Algorithm with an Enhanced Elite Mechanism
Author(s) -
Yufang Qin,
Junzhong Ji,
Chunnian Liu
Publication year - 2012
Publication title -
applied computational intelligence and soft computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 10
eISSN - 1687-9732
pISSN - 1687-9724
DOI - 10.1155/2012/682372
Subject(s) - evolutionary algorithm , multi objective optimization , mathematical optimization , computer science , population , convergence (economics) , entropy (arrow of time) , pareto principle , optimization problem , evolutionary computation , algorithm , mathematics , physics , demography , quantum mechanics , sociology , economics , economic growth
Multiobjective optimization problem (MOP) is an important and challenging topic in the fields of industrial design and scientific research. Multi-objective evolutionary algorithm (MOEA) has proved to be one of the most efficient algorithms solving the multi-objective optimization. In this paper, we propose an entropy-based multi-objective evolutionary algorithm with an enhanced elite mechanism (E-MOEA), which improves the convergence and diversity of solution set in MOPs effectively. In this algorithm, an enhanced elite mechanism is applied to guide the direction of the evolution of the population. Specifically, it accelerates the population to approach the true Pareto front at the early stage of the evolution process. A strategy based on entropy is used to maintain the diversity of population when the population is near to the Pareto front. The proposed algorithm is executed on widely used test problems, and the simulated results show that the algorithm has better or comparative performances in convergence and diversity of solutions compared with two state-of-the-art evolutionary algorithms: NSGA-II, SPEA2 and the MOSADE
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom