The Dynamics of a Ringing Church Bell
Author(s) -
J. Woodhouse,
Jonatan Rene,
Collinson Hall,
Lise Smith,
F. H. King,
J. W. McClenahan
Publication year - 2012
Publication title -
advances in acoustics and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.237
H-Index - 14
eISSN - 1687-627X
pISSN - 1687-6261
DOI - 10.1155/2012/681787
Subject(s) - ringing , vibration , hammer , impulse (physics) , engineering , amplitude , structural engineering , physics , acoustics , electrical engineering , classical mechanics , optics , filter (signal processing)
Church bell ringing as practised in the UK involves large-amplitude motions of both bell and clapper. A simulation model is developed and validated against experimental measurements. It is shown that the clapper does not hit the bell with a single impact but a long series of bounces, and this has important consequences for the decay profile of the bell vibration. Information relevant to bell-ringers and bell-hangers is collected in a series of design charts derived from the simulation model. These charts can assist in the diagnosis and correction of faults. Arising from the analysis of the bouncing clapper, a more general result is also presented relating to the frequency bandwidth when any structure is excited by a small bouncing impactor, for example an impulse hammer used in vibration testing
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom