Bifurcations of a Homoclinic Orbit to Saddle-Center in Reversible Systems
Author(s) -
Zhiqin Qiao,
Yancong Xu
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/678252
Subject(s) - homoclinic orbit , heteroclinic orbit , homoclinic bifurcation , orbit (dynamics) , codimension , saddle , mathematics , mathematical analysis , periodic orbits , bifurcation , physics , quantum mechanics , nonlinear system , mathematical optimization , engineering , aerospace engineering
The bifurcations near a primary homoclinic orbit to a saddle-center are investigated in a 4-dimensional reversible system. By establishing a new kind of local moving frame along the primary homoclinic orbit and using the Melnikov functions, the existence and nonexistence of 1-homoclinic orbit and 1-periodic orbit, including symmetric 1-homoclinic orbit and 1-periodic orbit, and their corresponding codimension 1 orcodimension 3 surfaces, are obtained
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom