Risk Assessment Method for Offshore Structure Based on Global Sensitivity Analysis
Author(s) -
Tao Zou,
Huajun Li,
Liu Defu
Publication year - 2012
Publication title -
modelling and simulation in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 20
eISSN - 1687-5591
pISSN - 1687-5605
DOI - 10.1155/2012/671934
Subject(s) - extreme value theory , randomness , sensitivity (control systems) , submarine pipeline , uncertainty analysis , computer science , risk assessment , risk analysis (engineering) , reliability engineering , marine engineering , engineering , statistics , mathematics , geotechnical engineering , simulation , medicine , electronic engineering , computer security
Based on global sensitivity analysis (GSA), this paper proposes a new risk assessment method for an offshore structure design. This method quantifies all the significances among random variables and their parameters at first. And by comparing the degree of importance, all minor factors would be negligible. Then, the global uncertainty analysis work would be simplified. Global uncertainty analysis (GUA) is an effective way to study the complexity and randomness of natural events. Since field measured data and statistical results often have inevitable errors and uncertainties which lead to inaccurate prediction and analysis, the risk in the design stage of offshore structures caused by uncertainties in environmental loads, sea level, and marine corrosion must be taken into account. In this paper, the multivariate compound extreme value distribution model (MCEVD) is applied to predict the extreme sea state of wave, current, and wind. The maximum structural stress and deformation of a Jacket platform are analyzed and compared with different design standards. The calculation result sufficiently demonstrates the new risk assessment method’s rationality and security
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom