z-logo
open-access-imgOpen Access
Modelling and Performance Analysis of a Network of Chemical Sensors with Dynamic Collaboration
Author(s) -
Alex Skvortsov,
Branko Ristić
Publication year - 2011
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/656231
Subject(s) - computer science , wireless sensor network , energy consumption , context (archaeology) , intermittency , real time computing , distributed computing , computer network , turbulence , ecology , paleontology , physics , biology , thermodynamics
The problem of environmental monitoring using a wireless network of chemical sensors with a limited energy supply is considered. Since the conventional chemical sensors in active mode consume vast amounts of energy, an optimisation problem arises in the context of a balance between the energy consumption and the detection capabilities of such a network. A protocol based on “dynamic sensor collaboration” is employed: in the absence of any pollutant, the majority of sensors are in the sleep (passive) mode; a sensor is invoked (activated) by wake-up messages from its neighbors only when more information is required. The paper proposes a mathematical model of a network of chemical sensors using this protocol. The model provides valuable insights into the network behavior and near optimal capacity design (energy consumption against detection). An analytical model of the environment, using turbulent mixing to capture chaotic fluctuations, intermittency, and nonhomogeneity of the pollutant distribution, is employed in the study. A binary model of a chemical sensor is assumed (a device with threshold detection). The outcome of the study is a set of simple analytical tools for sensor network design, optimisation, and performance analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom