Multiobjective Optimization of Irreversible Thermal Engine Using Mutable Smart Bee Algorithm
Author(s) -
Mofid Gorji-Bandpy,
Ahmad Mozaffari
Publication year - 2012
Publication title -
applied computational intelligence and soft computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 10
eISSN - 1687-9732
pISSN - 1687-9724
DOI - 10.1155/2012/652391
Subject(s) - computer science , genetic algorithm , firefly algorithm , algorithm , fitness function , artificial bee colony algorithm , particle swarm optimization , swarm behaviour , mathematical optimization , multi objective optimization , mutation , artificial intelligence , mathematics , machine learning , biochemistry , chemistry , gene
A new method called mutable smart bee (MSB) algorithm proposed for cooperative optimizing of the maximum power output (MPO) and minimum entropy generation (MEG) of an Atkinson cycle as a multiobjective, multi-modal mechanical problem. This method utilizes mutable smart bee instead of classical bees. The results have been checked with some of the most common optimizing algorithms like Karaboga’s original artificial bee colony, bees algorithm (BA), improved particle swarm optimization (IPSO), Lukasik firefly algorithm (LFFA), and self-adaptive penalty function genetic algorithm (SAPF-GA). According to obtained results, it can be concluded that Mutable Smart Bee (MSB) is capable to maintain its historical memory for the location and quality of food sources and also a little chance of mutation is considered for this bee. These features were found as strong elements for mining data in constraint areas and the results will prove this claim
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom