A Stochastic Decision Support System for Economic Order Quantity Problem
Author(s) -
Amir Yousefli,
Mehdi Ghazanfari
Publication year - 2012
Publication title -
advances in fuzzy systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 19
eISSN - 1687-711X
pISSN - 1687-7101
DOI - 10.1155/2012/650419
Subject(s) - economic order quantity , mathematical optimization , optimal decision , probabilistic logic , function (biology) , computer science , stochastic programming , decision rule , geometric programming , order (exchange) , decision support system , probability distribution , mathematics , operations research , decision tree , economics , statistics , artificial intelligence , supply chain , finance , evolutionary biology , biology , political science , law
Improving decisions efficiency is one of the major concerns of the decision support systems. Specially in the uncertain environment, decision support systems could be implemented efficiently to simplify decision making process. In this paper stochastic economic order quantity (EOQ) problem is investigated in which decision variables and objective function are uncertain in nature and optimum probability distribution functions of them are calculated through a geometric programming model. Obtained probability distribution functions of the decision variables and the objective function are used as optimum knowledge to design a new probabilistic rule base (PRB) as a decision support system for EOQ model. The developed PRB is a new type of the stochastic rule bases that can be used to infer optimum or near optimum values of the decision variables and the objective function of the EOQ model without solving the geometric programming problem directly. Comparison between the results of the developed PRB and the optimum solutions which is provided in the numerical example illustrates the efficiency of the developed PRB
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom