Disruption of the Serotonergic System after Neonatal Hypoxia-Ischemia in a Rodent Model
Author(s) -
Kathryn M. Buller,
Julie A. Wixey,
Hanna E. Reinebrant
Publication year - 2012
Publication title -
neurology research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 31
eISSN - 2090-1852
pISSN - 2090-1860
DOI - 10.1155/2012/650382
Subject(s) - serotonergic , hypoxia (environmental) , medicine , ischemia , serotonin , neuroscience , brain ischemia , brain damage , anesthesia , pharmacology , receptor , biology , chemistry , organic chemistry , oxygen
Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the brain is disrupted in a rodent model of preterm hypoxia-ischemia. One week after postnatal day 3 hypoxia-ischemia, losses of serotonergic raphé neurons, reductions in serotonin levels in the brain, and reduced serotonin transporter expression are evident. These changes can be prevented using two anti-inflammatory interventions; the postinsult administration of minocycline or ibuprofen. However, each drug has its own limitations and benefits for use in neonates to stem damage to the serotonergic network after hypoxia-ischemia. By understanding the fundamental mechanisms underpinning hypoxia-ischemia-induced serotonergic damage we will hopefully move closer to developing a successful clinical intervention to treat neonatal brain injury.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom