z-logo
open-access-imgOpen Access
High Resolution through Graded-Index Microoptics
Author(s) -
Victor V. Kotlyar,
A. A. Kovalev,
Anton G. Nalimov,
Sergey S. Stafeev
Publication year - 2012
Publication title -
advances in optical technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.124
H-Index - 25
eISSN - 1687-6407
pISSN - 1687-6393
DOI - 10.1155/2012/647165
Subject(s) - algorithm , physics , materials science , computer science
By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.4λ/n, where λ is the wavelength in free space and n is the refractive index on the fiber axis. By modeling in FullWAVE, we show that the high-resolution imaging can be achieved with half-pitch graded-index Mikaelian microlenses (ML) and Maxwell’s “fisheye” lenses. It is shown that using a 2D ML, the point source can be imaged near the lens surface as a light spot with the full width at half maximum (FWHM) of 0.12λ. This value is close to the diffraction limit for silicon (n=3.47) in 2D media FWHM=0.44λ/n=0.127λ. We also show that half-pitch ML is able to resolve at half-maximum two close point sources separated by a 0.3λ distance

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom