Probe-Based Confocal Laser Endomicroscopy Evaluation of Colon Preneoplastic Lesions, with Particular Attention to the Aberrant Crypt Foci, and Comparative Assessment with Histological Features Obtained by Conventional Endoscopy
Author(s) -
Massimo Mascolo,
Stefania Staibano,
Gennaro Ilardi,
Maria Siano,
Maria Luisa Vecchione,
Dario Esposito,
Gaetano De Rosa,
Giovanni Domenico De Palma
Publication year - 2012
Publication title -
gastroenterology research and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.622
H-Index - 45
eISSN - 1687-630X
pISSN - 1687-6121
DOI - 10.1155/2012/645173
Subject(s) - medicine , aberrant crypt foci , crypt , dysplasia , pathology , endomicroscopy , endoscopy , biopsy , histology , ulcerative colitis , radiology , confocal , colorectal cancer , disease , colonic disease , cancer , mathematics , geometry
The colorectal carcinoma represents one of the most common and aggressive malignancies, still characterized by an unacceptable mortality rate, mainly due to the high metastatic potential and to a late diagnosis. In the last years, the research community focused on the chance of improving the endoscopic screening to detect neoplastic lesions in a very early stage. Several studies proposed aberrant colonic crypt foci as the earliest recognizable step of transformation in colonic multiphase carcinogenesis. We previously demonstrated the clinical applicability and predictive power of probe-based confocal laser endoscopy (pCLE) in superficial colorectal neoplastic lesions and also characterized in vivo a case of dysplasia-associated lesional mass (DALM) in ulcerative colitis. Now, we aim to evaluate the accuracy of pCLE in the detection of ACF comparing in double-blind manner the microendoscopic and histopathological features resulting from colonic biopsy. By pCLE, we identified specific crypt architecture modifications associated with changes in cellular infiltration and vessels architecture, highlighting a good correspondence between pCLE features and histology.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom