z-logo
open-access-imgOpen Access
Convergence of the Euler Method of Stochastic Differential Equations with Piecewise Continuous Arguments
Author(s) -
Ling Zhang,
Minghui Song
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/643783
Subject(s) - lipschitz continuity , mathematics , monotone polygon , convergence (economics) , piecewise , euler's formula , euler method , bounded function , moment (physics) , stochastic differential equation , piecewise linear function , mathematical analysis , geometry , physics , classical mechanics , economics , economic growth
The main purpose of this paper is to investigate the strong convergence of the Euler method to stochastic differential equations with piecewise continuous arguments (SEPCAs). Firstly, it is proved that the Euler approximation solution converges to the analytic solution under local Lipschitz condition and the bounded pth moment condition. Secondly, the Euler approximation solution converge to the analytic solution is given under local Lipschitz condition and the linear growth condition. Then an example is provided to show which is satisfied with the monotone condition without the linear growth condition. Finally, the convergence of numerical solutions to SEPCAs under local Lipschitz condition and the monotone condition is established

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom