z-logo
open-access-imgOpen Access
Analyzing the Diverging Diamond Interchange Using Discrete Event Simulation
Author(s) -
Michael Anderson,
Bernard J. Schroer,
Dietmar Moeller
Publication year - 2012
Publication title -
modelling and simulation in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 20
eISSN - 1687-5591
pISSN - 1687-5605
DOI - 10.1155/2012/639865
Subject(s) - limiting , discrete event simulation , computer science , event (particle physics) , traffic flow (computer networking) , diamond , traffic simulation , construct (python library) , simulation modeling , simulation , engineering , transport engineering , mechanical engineering , computer network , microsimulation , economics , microeconomics , chemistry , physics , organic chemistry , quantum mechanics
The diverging diamond interchange (DDI) can improve traffic flow by limiting the number of phases in the traffic signals and improve safety by eliminating left turns. A few instillations of these interchanges have been constructed and there is great potential to construct more. In an effort to develop a methodology to evaluate these interchanges, this paper presents the development of a discrete event simulation model of the diverging diamond interchange (DDI). Specific emphasis is on using simulation to model the DDI, a description of the operation of the simulation model, and using simulation to understand the operation of the DDI. The paper concludes that the use of the simulation package allows for rapid evaluation of the DDI and demonstrates that this interchange design will not work in all locations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom