Chromatin-Associated Proteins Revealed by SILAC-Proteomic Analysis Exhibit a High Likelihood of Requirement for Growth Fitness under DNA Damage Stress
Author(s) -
Han Wang,
Phornpimon Tipthara,
Lei Zhu,
Suk Yean Poon,
Kai Tang,
Jianhua Liu
Publication year - 2012
Publication title -
international journal of proteomics
Language(s) - English
Resource type - Journals
eISSN - 2090-2174
pISSN - 2090-2166
DOI - 10.1155/2012/630409
Subject(s) - stable isotope labeling by amino acids in cell culture , chromatin , non histone protein , ribosomal protein , biology , computational biology , quantitative proteomics , proteomics , dna , genetics , gene , ribosome , rna
Chromatin-associated nonhistone proteins (CHRAPs) are readily collected from the DNaseI digested crude chromatin preparation. In this study, we show that the absolute abundance-based label-free quantitative proteomic analysis fail to identify potential CHRAPs from the CHRAP-prep. This is because that the most-highly abundant cytoplasmic proteins such as ribosomal proteins are not effectively depleted in the CHRAP-prep. Ribosomal proteins remain the top-ranked abundant proteins in the CHRAP-prep. On the other hand, we show that relative abundance-based SILAC-mediated quantitative proteomic analysis is capable of discovering the potential CHRAPs in the CHRAP-prep when compared to the whole-cell-extract. Ribosomal proteins are depleted from the top SILAC ratio-ranked proteins. In contrast, nucleus-localized proteins or potential CHRAPs are enriched in the top SILAC-ranked proteins. Consistent with this, gene-ontology analysis indicates that CHRAP-associated functions such as transcription, regulation of chromatin structures, and DNA replication and repair are significantly overrepresented in the top SILAC-ranked proteins. Some of the novel CHRAPs are confirmed using the traditional method. Notably, phenotypic assessment reveals that the top SILAC-ranked proteins exhibit the high likelihood of requirement for growth fitness under DNA damage stress. Taken together, our results indicate that the SILAC-mediated proteomic approach is capable of determining CHRAPs without prior knowledge.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom