z-logo
open-access-imgOpen Access
Dynamic Difficulty Balancing for Cautious Players and Risk Takers
Author(s) -
Guy E. Hawkins,
Keith Nesbitt,
Scott Brown
Publication year - 2012
Publication title -
international journal of computer games technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.248
H-Index - 19
eISSN - 1687-7055
pISSN - 1687-7047
DOI - 10.1155/2012/625476
Subject(s) - computer science , sequential game , screening game , strategy , game theory , microeconomics , economics
Dynamic balancing of game difficulty can help cater for different levels of ability in players. However, performance in some game tasks depends on not only the player's ability but also their desire to take risk. Taking or avoiding risk can offer players its own reward in a game situation. Furthermore, a game designer may want to adjust the mechanics differently for a risky, high ability player, as opposed to a risky, low ability player. In this work, we describe a novel modelling technique known as particle filtering which can be used to model various levels of player ability while also considering the player's risk profile. We demonstrate this technique by developing a game challenge where players are required to make a decision between a number of possible alternatives where only a single alternative is correct. Risky players respond faster but with more likelihood of failure. Cautious players wait longer for more evidence, increasing their likelihood of success, but at the expense of game time. By gathering empirical data for the player's response time and accuracy, we develop particle filter models. These models can then be used in real-time to categorise players into different ability and risk-taking levels

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom