Rapid Mapping and Deformation Analysis over Cultural Heritage and Rural Sites Based on Persistent Scatterer Interferometry
Author(s) -
Deodato Tapete,
Francesca Cigna
Publication year - 2012
Publication title -
international journal of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.253
H-Index - 19
eISSN - 1687-8868
pISSN - 1687-885X
DOI - 10.1155/2012/618609
Subject(s) - landslide , interferometry , cliff , zoning , geology , hazard , deformation (meteorology) , human settlement , seismology , radar , scale (ratio) , interferometric synthetic aperture radar , remote sensing , geography , cartography , archaeology , synthetic aperture radar , computer science , civil engineering , paleontology , telecommunications , engineering , physics , chemistry , organic chemistry , astronomy , oceanography
We propose an easy-to-use procedure of “PSI-based rapid mapping and deformation analysis,” to effectively exploit Persistent Scatterer Interferometry (PSI) for multispatial/temporal hazard assessment of cultural heritage and rural sites, update the condition report at the scale of entire site and single building, and address the conservation strategies. Advantages and drawbacks of the methodology are critically discussed based on feasibility tests performed over Pitigliano and Bivigliano, respectively, located in Southern and Northern Tuscany, Italy, and representative of hilltop historic towns and countryside settlements chronically affected by natural hazards. We radar-interpreted ERS-1/2 (1992–2000) and ENVISAT (2003–2010) datasets, already processed, respectively with the Permanent Scatterers (PSs) and Persistent Scatterers Pairs (PSPs) techniques, and assigned the levels of conservation criticality for both the sites. The PSI analysis allowed the zoning of the most unstable sectors of Pitigliano and showed a good agreement with the most updated hazard assessment of the cliff. The reconstruction of past/recent deformation patterns over Bivigliano confirmed the criticality for the Church of San Romolo, supporting the hypothesis of a correlation with local landslide phenomena, as also perceived from the annual motions observed over the entire site, where several landslide bodies are mapped
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom