Simulation Study of Sensitivity Performance of MEMS Capacitive Bending Strain Sensor for Spinal Fusion Monitoring
Author(s) -
Muhammad Irsyad Abdul Mokti,
Inzarulfaisham Abd Rahim
Publication year - 2012
Publication title -
modelling and simulation in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 20
eISSN - 1687-5591
pISSN - 1687-5605
DOI - 10.1155/2012/614070
Subject(s) - capacitive sensing , materials science , sensitivity (control systems) , cantilever , microelectromechanical systems , bending , electrode , optoelectronics , substrate (aquarium) , dielectric , electronic engineering , electrical engineering , composite material , engineering , chemistry , oceanography , geology
This study evaluates the sensitivity of microelectromechanical system (MEMS) capacitive bending strain sensor with a double layer cantilever designed to meet the requirements of spinal fusion monitoring. The cantilever structure of the sensor consists of two parallel substrate plates which constitute the electrodes, attached to an anchor made of silicon dioxide. The sensor was able to monitor bending strain value ranging from 0 to 1000 με. In order to evaluate the sensitivity of the sensor, parametric study was carried out by varying electrode gap, anchor length, and dielectric coverage between the electrodes. The nominal capacitive strain sensor for various applications has sensitivity ranging from 255 aF/με to 0.0225 pF/με. An increase in the sensitivity was observed on reducing the electrode gap and the anchor length and increasing the dielectric coverage, resulting in a highest sensitivity value of 0.2513 pF/με. It was also observed that dielectric constant has a significant effect on the sensitivity behavior of the sensor
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom