z-logo
open-access-imgOpen Access
Accuracy and Uncertainty Analysis of PSBT Benchmark Exercises Using a Subchannel Code MATRA
Author(s) -
Dae-Hyun Hwang,
Seong Jin Kim,
Kyong-Won Seo,
Hyuk Min Kwon
Publication year - 2012
Publication title -
science and technology of nuclear installations
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.417
H-Index - 24
eISSN - 1687-6083
pISSN - 1687-6075
DOI - 10.1155/2012/603752
Subject(s) - benchmark (surveying) , bundle , turbulence , monte carlo method , experimental data , computational fluid dynamics , mechanics , simulation , nuclear engineering , engineering , materials science , physics , mathematics , statistics , geodesy , composite material , geography
In the framework of the OECD/NRC PSBT benchmark, the subchannel grade void distribution data and DNB data were assessed by a subchannel code, MATRA. The prediction accuracy and uncertainty of the zone-averaged void fraction at the central region of the 5 × 5 test bundle were evaluated for the steady-state and transient benchmark data. Optimum values of the turbulent mixing parameter were evaluated for the subchannel exit temperature distribution benchmark. The influence of the mixing vanes on the subchannel flow distribution was investigated through a CFD analysis. In addition, a regionwise turbulent mixing model was examined to account for the nonhomogeneous mixing characteristics caused by the vane effect. The steady-state DNB benchmark data with uniform and nonuniform axial power shapes were evaluated by employing various DNB prediction models: EPRI bundle CHF correlation, AECL-IPPE 1995 CHF lookup table, and representative mechanistic DNB models such as a sublayer dryout model and a bubble crowding model. The DNBR prediction uncertainties for various DNB models were evaluated from a Monte-Carlo simulation for a selected steady-state condition

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom