MPD-Model: A Distributed Multipreference-Driven Data Fusion Model and Its Application in a WSNs-Based Healthcare Monitoring System
Author(s) -
Jibing Gong,
Li Cui,
Kejiang Xiao,
Rui Wang
Publication year - 2012
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/602358
Subject(s) - computer science , wearable computer , sensor fusion , data mining , support vector machine , feature (linguistics) , artificial intelligence , feature extraction , pattern recognition (psychology) , machine learning , embedded system , philosophy , linguistics
We first propose an MPD-Model, a novel distributed multipreference-driven data fusion model for WSNs. Here, preferences are looked as the core elements of collaboration mechanism in a data fusion procedure. We then present MFA, a distributed multi-preference feature-level fusion algorithm based on weighted average method. Next, to implement feature extraction of wrist-pulse data, we propose FEA, a light-weight adaptive feature extraction algorithm for time series sensed data. Simultaneously, we design TFD-Pattern that is a unique human pulse pattern. Based on historical data, we propose an SVM-based algorithm for health status detection tasks. Finally, we implement the proposed methods in a real wearable healthcare monitoring system which had been previously developed in-house. We validate the proposed methods using real-world data sets with 2046 pulse samples. Experimental results show that the proposed methods outperform the baseline methods, and the proposed MPD-Model is reasonable and effective. © 2012 Jibing Gong et al.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom