Enhanced Visible Light Photocatalytic Activity of Mesoporous AnataseTiO 2 Codoped with Nitrogen and Chlorine
Author(s) -
Xiuwen Cheng,
Xiujuan Yu,
Zipeng Xing,
Lisha Yang
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/593245
Subject(s) - photocatalysis , anatase , x ray photoelectron spectroscopy , visible spectrum , materials science , crystallite , mesoporous material , titanium dioxide , band gap , rutile , analytical chemistry (journal) , nuclear chemistry , chemical engineering , chemistry , catalysis , organic chemistry , optoelectronics , engineering , metallurgy
Anatase mesoporous titanium dioxide codoped with nitrogen and chlorine (N-Cl-TiO2) photocatalysts were synthesized through simple one-step sol-gel reactions in the presence of ammonium chloride. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS). XRD results indicated that codoping with nitrogen and chlorine could effectively retard the phase transformation of TiO2 from anatase to rutile and the growth of the crystallite sizes. XPS revealed that nitrogen and chlorine elements were incorporated into the lattice of TiO2 through substituting the lattice oxygen atoms. DRS exhibited that the light absorption of N-Cl-TiO2 in visible region was greatly improved. As a result, the band gap of TiO2 was reduced to 2.12 eV. The photocatalytic activity of the as-synthesized TiO2 was evaluated for the degradation of RhB and phenol under visible light irradiation. It was found that N-Cl-TiO2 catalyst exhibited higher visible light photocatalytic activity than that of P25 TiO2 and N-TiO2, which was attributed to the small crystallite size, intense light absorption in visible region, and narrow band gap
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom