Experimental Evaluation of Sulfur Dioxide Absorption in Water Using Structured Packing
Author(s) -
RosaHilda Chávez,
N. Flores-Álamo,
Javier de J. Guadarrama
Publication year - 2012
Publication title -
international journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 25
eISSN - 1687-8078
pISSN - 1687-806X
DOI - 10.1155/2012/579381
Subject(s) - packed bed , mass transfer , structured packing , pressure drop , materials science , mass transfer coefficient , raschig ring , countercurrent exchange , analytical chemistry (journal) , absorption (acoustics) , sulfur dioxide , mass fraction , mechanics , thermodynamics , chemistry , chromatography , composite material , physics , inorganic chemistry
An experimental study of hydrodynamic and mass transfer processes was carried out in an absorption column of 0.252 m diameter and 3.5 m of packed bed height developed by Mexican National Institute of Nuclear Research (ININ by its acronym in Spanish) of stainless steel gauze corrugated sheet packing by means of SO2-air-water systems. The experiments results include pressure drop, flows capacity, liquid hold-up, SO2 composition, and global mass transfer coefficient and mass transfer unit height by mass transfer generalized performance model in order to know the relationship between two-phase countercurrent flow and the geometry of packed bed. Experimental results at loading regimen are reported as well as model predictions. The average deviation between the measured values and the predicted values is ±5% of 48-data-point absorption test. The development of structured packing has allowed greater efficiency of absorption and lower pressure drop to reduce energy consumption. In practice, the designs of equipment containing structured packings are based on approximations of manufacturer recommendations
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom